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Abstract. We propose a branch-and-bound algorithm of Falk–Soland’s type for solving the
minimum cost production-transportation problem with concave production costs. To accelerate the
convergence of the algorithm, we reinforce the bounding operation using a Lagrangian relaxation,
which is a concave minimization but yields a tighter bound than the usual linear programming
relaxation in O(mn log n) additional time. Computational results indicate that the algorithm can
solve fairly large scale problems.
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1. Introduction

The production-transportation problem is a model for determining both optimal
production at some factories manufacturing a single commodity and optimal
transportation of the products to warehouses with known demands. Let G 5

(M, N, A) be a bipartite graph consisting of a set M of m factories, a set N of n
warehouses and a set A 5 M 3 N of mn transportation routes. At each factory i [ M
the cost of producing y units is f ( y ) and the production capacity is u units. Due toi i i i

economy of scale, the production cost f : R → R is assumed to be a nonlinear,i

concave and nondecreasing function. At each warehouse j [ N there is a demand of
b units. The cost of shipping a unit by route (i, j) [ A is c . The problem is thenj ij

formulated as follows:

minimize z 5 O c x 1 O f ( y )ij ij i i
i[M(i, j )[Au

subject to O x < y , 0 < y < u , i [ Mij i i i
j[N (1.1)u O x 5 b , j [ Nij j
i[Mu x > 0 , (i, j) [ A ,ij

where x s and y s are variables to be determined.ij i
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The problem (1.1) belongs to the class of capacitated minimum concave-cost
flow problems. The main characteristic of (1.1) is that the number m of nonlinear
concave variables is rather small in comparison with the number mn of linear
variables. Over the past ten years, seveal parametric algorithms using this low-rank
concavity [14] have been proposed to solve the problem with fixed m [9, 13, 16, 17,
23–25]. Some of them work even if the total production cost is given as a

mnonseparable function f : R → R (e.g. [23–25]). This family of algorithms is
polynomial or pseudo-polynomial in n and the most efficient for small m, especially
when m < 3. Unfortunately, however, it is exponential in m and will be of no
practical use if m exceeds five at most. Therefore, brnach-and-bound is still thought
of as a reliable and effective approach to the problem (1.1) with larger m, as to
general minimum concave-cost flow problems. Branch-and-bound algorithms applic-
able to (1.1) are classified roughly into two types. The first type uses the fact that at
least one basic solution is optimal to (1.1), and implicitly enumerates the spanning
trees of G [5, 8]. The second type exploits the sebarability of the objective function
and successively improves its linear underestimator by dividing the feasible set. The
basis of this approach is found in Falk and Soland [4]. While they did not assume
any network structures, Soland modified their algorithm later to handle a production-
transportation problem with concave transportation costs [20]. In a textbook [11],
Horst et al. have also applied Falk–Soland’s algorithm to (1.1). The readers are
referred to [7, 18] for comprehensive reviews on minimum concave-cost flow
problems.

In this paper, we develop a branch-and-bound algorithm of the second type to
solve the problem (1.1) with m larger than five. The branching operation in our
algorithm is similar to that of Soland, which divides the feasible set of nonlinear
variables to generate subproblems; but the bounding operation fully exploits the
problem structures and is implemented through two stages: the first stage based on a
linear programming relaxation and the second stage based on a Lagrangian
relaxation. Although the Lagrangian relaxation of each subproblem is a concave
minimization, this two-stage bounding operation provides a lower bound for it much
tighter than that of Soland in O(mn log n) additional computational time. In Section
2, both the relaxations are given in detail. Section 3 is devoted to the algorithm
incorporating the two-stage bounding operation. Computational results of the
algorithm are reported in Section 4. Some final remarks are discussed in Section 5.

2. Relaxations

We assume throughout the paper that both the production capacity u at each factoryi

i [ M and the demand b at each warehouse j [ N are positive integers; and that thej

unit transportation cost c by each route (i, j) [ A is a nonnegative real number. Weij

also assume that

B ; O b < O u . (2.1)j i
j[N i[M
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Otherwise, the problem (1.1) has no feasible solutions. Since the objective function
is continuous and the feasible set is a polytope, (1.1) always has an optimal solution
under condition (2.1). In addition to this, the concave objective function achieves its
minimum at some vertex of the feasible set. By total unimodularity, all the vertices
are integral vectors as long as b s and u s are integers (see e.g. [2]). Therefore, oncej i

we assume (2.1), the problem (1.1) has an integral optimal solution (x*, y*) such
that

*O x 5 y* , i [ M (2.2)ij i
j[N

because of the monotonicity of f s.i

Using (2.2), let us rewrite (1.1) as follows:

minimize z 5 f(x, y) ; O c x 1 O f ( y )ij ij i i
i[M(i, j )[Au

subject to O x 5 y , i [ Mij i
PTP j[Nu O x 5 b , j [ Nij j

i[Mu x > 0 , y [ Y ,

where x 5 (x u (i, j) [ A) and y 5 ( y u i [ M) are the vectors of linear and nonlinearij i

variables, respectively, and

Y 5 [0, u ] 3 ? ? ? 3 [0, u ] .1 m

As mentioned in Section 1, we apply a branching operation on the set Y recursively
k kand divide it into a number of subsets Y , k 5 1, . . . , r. The division = 5 hY uk 5

1, . . . , rj we employ is an integral rectangular partition of Y, i.e. for each
k 5 1, . . . , r, we have

k k k k k kY 5 I 3 ? ? ? 3 I ; I 5 [l , u ] , i [ M ,1 m i i i

k kwhere l s and u s are integers; andi i

r

k k h< Y 5 Y; int Y > int Y 5 5 if k ± h .
k51

kAssociated with each partition set Y [ = we define a subproblem:

minimize z 5 f(x, y)u
subject to O x 5 y , i [ Mij i

j[NkP u O x 5 b , j [ Nij j
i[M

ku x > 0 , y [ Y .
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The following are immediate consequences:

kPROPOSITION 2.1. (i) Problem P has an optimal solution if and only if

k kO l < B < O u . (2.3)i i
i[M i[M

k k kIf (2.3) holds, P has at least one integral optimal solution (x , y ).
k k k k(ii) Let z 5 f(x , y ) if (2.3) holds; z 5 1` otherwise. Then the optimal value of

PTP is given by
kz* 5 minhz uk 5 1, . . . , rj .

k kGiven a rectangular partition = 5 hY uk 5 1, . . . , rj of Y, let us take a set Y [ =
ksatisfying condition (2.3) and consider the associated subproblem P . As a

kbeginning, we will present a linear programming relaxation of P , which minimizes
the convex envelop of the objective function f as do both Falk–Soland’s and
Soland’s relaxations [4, 20].

2.1. LINEAR PROGRAMMING RELAXATION

k k kThe convex envelop of f over the interval I 5 [l , u ] is defined byi i i i

k kf (u ) 2 f (l )] i i i i k k]]]]f ( y ) 5 ( y 2 l ) 1 f (l ) , i [ M ,i i k k i i i iu 2 li i

which satisfies
] ]k kf ( y ) < f ( y ) if y [ I ; f ( y ) > f ( y ) if y [⁄ int I . (2.4)i i i i i i i i i i i i

] kHence, replacing f by f in P for each i [ M, we have a linear program yielding ai i
klower bound for z . Actually, in Falk–Soland [4] this linear program is used directly

k kas a relaxation of P . In Soland [20], the set of constraints y [ Y is further relaxed
into y [ Y, to make a Hitchcock problem of the resulting problem. We adopt a

kcompromise of these relaxations and replace y [ Y by
k0 < y < u , i [ M . (2.5)i i

If we delete y by substituting y 5 o x into (2.5) for each i [ M, our relaxationi i j[N ij

is also reduced to a Hitchcock problem:

] k kminimize z 5f(x) ; O c x 1 dij ij
(i, j )[Au
ksubject to O x < u , i [ M] ij i

P j[Nu O x 5 b , j [ Nij j
i[Mu x > 0 ,

where
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k kf (u ) 2 f (l )i i i ik ]]]]c 5 c 1 , (i, j) [ Aij ij k ku 2 li i (2.6)k kf (u ) 2 f (l )i i i ik k k 6]]]]d 5 O f (l ) 2 l .S Di i k k iu 2 li[M i i

] ]THEOREM 2.2. Problem P has an integral optimal solution x. Let

]] ] ] ]y 5 O x , i [ M ; z 5f(x) .i ij
j[N

] ]Then (x, y) is feasible to PTP and we have

k] ] ]z < z ; f(x, y) > z* .
]

Proof. Follows from the construction of P. h

k]We can thus use z as a lower bound for z and terminate branching at subproblem
k ]P unless z is less than the value of each feasible solution of PTP in hand. Although

]the bound z might not be as tight as Falk–Soland’s, it is tighter than Soland’s; and
] ]besides, P yielding z is a simple Hitchcock problem like Soland’s. Nevertheless, the

]bound z is not tight enough yet to improve branch-and-bound algorithms of the
second type drastically. To solve PTP with large m, we have to devise another

]krelaxation of P yielding a much tighter bound than P.

2.2 LAGRANGIAN RELAXATION

Let us introduce a Lagrangian multiplier vector l 5 (l u j [ N) for relaxing the setj

of constraints o x 5 b , j [ N. By noting that x cannot exceed b for eachi[M ij j ij j

(i, j) [ A, we write the resulting problem as follows:

minimize z 5 f(x, y; l) ; O c (l)x 1 O f ( y ) 1 O l bij ij i i j j
i[M j[N(i, j )[A

L(l) subject to O x 5 y , i [ Mij i
j[N*

k0 < x < b , (i, j) [ A, y [ Y ,ij j

where

c (l) 5 c 2 l , (i, j) [ A . (2.7)ij ij j

kThis is the second relaxation of P and plays the central role in our algorithm. As is
well-known (see e.g. [19]), we have the following:

LEMMA 2.3. Let (x(l), y(l)) denote an optimal solution of L(l) and let z(l) 5

f(x(l), y(l); l). Then

k nz(l) < z , ;l [ R .
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The question here is how we should choose a value of l for each i [ N such thati
]z(l) .z. To answer this, we need to consider a linear programming relaxation of

]]
L(l). In the same way as we have constructed P, we can linearize L(l) using f s intoi

] k kminimize f(x; l) ; O (c 2 l )x 1 d 1 O l bij j ij j j
j[N(i, j )[A

k (2.8)subject to O x < u , i [ Mij i
j[N*
0 < x < b , (i, j) [ A ,ij j

k kwhere c s and d are defined in (2.6). The dual problem of (2.8) is then written asij

follows:

k kmaximize c(m, n ; l) ; 2 O u m 2 O b n 1 d 1 O l bi i j ij j j
i[M j[N(i, j )[A

k (2.9)subject to 2m 2 n < c 2 l , (i, j) [ Ai ij ij j*
m > 0, n > 0 ,

where m 5 (m u i [ M) and n 5 (n u (i, j) [ A) are the vectors of dual variables. Leti ij
] ]]x(l) and (m(l), n(l)) denote optimal solutions of (2.8) and (2.9), respectively.

From the duality theorem in linear programming, we have

] ] ]]max f(x(l); l) 5max c(m(l), n(l); l)
n nl[R l[R

k
2m 2 n < c 2 l , (i, j) [ Ai ij ij j5max c(m, n, l) .UH J

m,n,l m > 0, n > 0

(2.10)

]] ]LEMMA 2.4. The right-hand-side of (2.10) has a maximum point (m, n, l) with
]n 5 0.

Proof. Let (m9, n9, l9) with n9 ± 0 be a maximum point. Also let

] ] ]9l 5 l9 2 O n , j [ N ; m 5 m9 , i [ M ; n 5 0 , (i, j) [ A .j j ij i i ij
i[M

Then we have

]k k k] ] 9 92m 2n < c 2 l9 1 n < c 2 l9 1 O n 5 c 2l , (i, j) [ Ai ij ij j ij ij j hj ij j
h[M

] ]k k] ] ]c(m, n, l) 5 2 O u m 1 d 1 O l bi i j j
i[M j[N

k k 95 2 O u m9 1 d 1 O l9 2 O n b 5 c(m9, n9, l9) .i j ij jS D
i[M j[N i[M

]] ]This implies that (m, n, l) is a maximum point as well. h

]
Note that, if we set n 5 0 in (2.10), it coincides with the dual problem of P:
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k kmaximize g(m, l) ; O b l 2 O u m 1 dj j i i
j[N i[M

k (2.11)subject to l 2 m < c , (i, j) [ Aj i ij*
m > 0 .

Hence, we immediately have the following lemma:

]]LEMMA 2.5. Let (m, l) be an optimal solution of (2.11). Then

]] ]] ]max f(x(l); l) 5 g(m, l) 5z .
nl[R

THEOREM 2.6. Let (x(l), y(l)) denote an optimal solution of L(l) and let
z(l) 5 f(x(l), y(l); l). Then

] k]z < z(l) < z ,

k k kwhere the first inequality holds strictly if f is strictly concave on I 5 [l , u ] andi i i i] ky (l) [ int I for some i [ M.i i

Proof. It follows from Lemma 2.5 that

] ] ]l [ arg max f(x(l); l) .
nl[R

] ]
Since (2.8) with l 5l is a relaxation of L(l), we have

] ] ] ] ] ]] ] ]z(l) 5 f(x(l), y(l); l) >f(x(l); l) 5z .

] ]k kIf y (l) [ int I and f is strictly concave on I for some i [ M, we have f ( y (l)) .i i i i i i
] ]
f ( y (l)) by definition; hence,i i

] ] ] ] ] ] ]] ] ]f(x(l), y(l); l) .f(x(l); l) >f(x(l); l) . h

] ]]While the bound z(l) turned out to be tighter than z, problem L(l) yielding it is a
]]

concave minimization in contrast to P. This means that L(l) can have multiple local
kminima, many of which fail to be global ones. Therefore, as does P , the relaxed

]
problem L(l) itself belongs to the class of multiextremal global optimization which
is known to be hard to solve in general [11, 12]. In the next section, however, we
will show that the global minimum z(l) of L(l) can be computed in O(mn log n)
arithmetic operations and in O(mn) evaluations of f s for a given l.i

3. Algorithm

Let us again look at problem L(l) in detail. We then see that it can be decomposed
into m minimization problems, each of which is of the form:
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minimize z 5 O c (l)x 1 f ( y )i ij ij i i
j[N

(3.1)subject to O x 5 yij i
j[N*

k0 < x < b , j [ N , y [ I .ij j i i

Even though the objective function is concave, (3.1) turns into a continuous linear
k k kknapsack problem once we fix the value of y in the interval I 5 [l , u ]. Supposei i i i

that the variables x , j [ N, are arranged in the orderij

c (l) < ? ? ? < c (l) < 0 < c (l) < ? ? ? < c (l) . (3.2)ij ij ij ij1 p p11 n

Then an optimal solution of (3.1) with a fixed y is given byi

b , h 5 1, . . . , q 2 1jh

q21

x̃ ( y ) 5 (3.3)ij i y 2 O b , h 5 qh i jh
h515

0 , h 5 q 1 1, . . . , n ,

q21 qif there is an index q < p such that o b < y , o b ; otherwise,h51 j i h51 jh h

b , h 5 1, . . . , pjhx̃ ( y ) 5 (3.4)Hij ih 0 , h 5 p 1 1, . . . , n .

Let

˜F ( y ) 5 O c (l)x ( y ) 1 f ( y ) ; (3.5)i i ij ij i i i
j[N

and let

h 5 0 ; h 5h 1 b , h 5 1, . . . , n . (3.6)0 h h21 jh

LEMMA 3.1. The function F is concave on the interval [h , h ] for eachi h21 h

h 5 1, . . . , n.

Proof. We see from (3.2)–(3.6) that F is composed of a concave function f andi i

˜n piecewise affine functions c (l)x ( y ), j [ N, each of which has at most oneij ij i

break point in hh uh 5 0, 1, . . . , nj. Since a sum of concave and affine functions ish

concave (see e.g. [3]), the function F is concave on each affine piece ofi

˜o c (l)x ( y ). hj[N ij ij i

Lemma 3.1 guarantees that F is minimized at some end point of [h , h ]s overi h h21

the whole interval [h , h ] 5 [0, B]. Therefore, the optimal value of (3.1) is given by0 n

k k kz (l) 5 minhF ( y ) u y [ (I > hh uh 5 0, 1, . . . , nj) < hl , u jj ; (3.7)i i i i i h i i

and the optimal value of L(l) is
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z(l) 5 O z (l) 1 O l b .i j j
i[M j[N

nTHEOREM 3.2. Given l [ R , the lower bound z(l) can be computed in
O(mn log n) arithmetic operations and O(mn) evaluations of f s.i

Proof. For each i [ M, sorting c (l) in the order (3.2) requires O(n log n)ij

arithmetic operations; and (3.7) requires O(n) evaluations of f . Their total numbersi

are O(mn log n) and O(mn), respectively. h

The polynomial-time solvability of the concave minimization problem L(l) is
totally due to the rank-two monotonicity [14, 21] possessed by the objective function
of (3.1). Functions of this class are certainly concave on their domains; but the
concavity can be embedded into only a two-dimensional subspace, which enable us
to effectively apply parametric programming like the above (see [14, 22] for further
details). In Chapter 7.9 of his recent book [22], Tuy has discussed rank-two
monotonic problems of the form (3.1). Theorem 3.2 can be thought of as a
consequence of his result (Proposition 7.11 in [22]).

3.1. DESCRIPTION OF THE BRANCH-AND-BOUND ALGORITHM

Using the results obtained so far, we implement the bounding operation through two
0stages. Let z denote the least value among feasible solutions of PTP in hand. At the

]
first stage, we solve the linear programming relaxed problem P for a given

k 0 0 0] ] ]subproblem P ; if the lower bound z is less than z , we set z to minhz , f(x, y)j and
proceed to the second stage. At the second stage, we solve the Lagrangian relaxed

] ] ]]problem L(l). Here, (m, l) is an optimal dual solution of P and hence can be
]

computed in the process of the first stage. Unless the lower bound z(l) is less than
0 kz , the subproblem P is fathomed.

] 0If z(l) , z , we implement the branching operation in the same way as in Soland
[20]. Namely, we choose a factory node s [ M such that

]] ]s [ arg max h f (y ) 2f (y )j , (3.8)i i i i
i[M

k k k k k ]1and divide the corresponding interval I 5 [l , u ] into two subintervals I 5 [l , y ]s s s s s s
k k]2and I 5 [y , u ]. We then update the integral rectangular partition of Y as follows:s s s

k k k k k kh hY 5 I 3 ? ? ? 3 I 3 I 3 I 3 ? ? ? 3 I , h 5 1, 21 s21 s s11 m

k k k1 2= 9 5 (= \Y ) < hY , Y j .

k k]We should note that y falls in the open interval (l , u ). Since we haves s s

] 0] ] ] ] ] ] ]z 5 O c x 1 O f (y ) , z < f(x, y) 5 O c x 1 O f (y ) ,ij ij i i ij ij i i
i[M i[M(i, j )[A (i, j )[A

at least one of the differences in (3.8) is positive. We see from (2.4) that this can
k k k] ]happen only when y [ int I . Hence, by the integrality of y , l and u for all i [ M,s s i i i
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the number of branching operations on each partition set must be finite. Also note
k k] ]1 2that y lies in both the partition sets Y and Y newly generated. This implies that x

] ]k k k k1 2 1 2is feasible to both P and P associated with Y and Y , respectively. We can
]therefore save the time and memory needed to solve one of them by using x as a

starting feasible solution if we employ the depth-first-search rule to choose a
partition set from = 9.

The branch-and-bound algorithm for PTP is summarized into a recursive form:

algorithm LP LAGRANGE;–
begin

:B 5 o b ;j[N j

if B . o u then PTP is infeasiblei[M i

else
begin

0 0 0: :initialize the incumbent (x ; y ) 5 (0, 0) and z 5 1`;
BRANCH/BOUND(Y);

0 0: :x* 5 x and z* 5 z
end

end;

kprocedure BRANCH/BOUND(Y );
begin

k k klet [l , u ], i [ M, denote the intervals defining Y ;i i
k kif o l < B < o u theni[M i i[M i

begin hThe first-stage bounding operationj
k klet P denote the subproblem associated with Y ;

] k kdefine the convex envelop f of f over [l , u ] for each i [ M and construct thei i i i] klinear programming relaxed problem P of P ;
]] ]] ]solve P to obtain its optimal solution x, value z and dual solution (m, l);

0]if z , z then
begin hThe second-stage bounding operationj

] :y 5 o x for each i [ M;i j[N ij
0 0 0 0] ] ] ] ] ]: :if f(x, y) , z then update (x , y ) 5 (x, y) and z 5 f(x, y);

] ]kconstruct the Lagrangian relaxed problem L(l) of P using l;
] ]

solve L(l) to obtain its optimal value z(l);
] 0if z(l) , z then

begin hThe branching operationj
]] ]choose s [ arg max h f (y ) 2f (y )j;i[M i i i i

k k k k k k k] ]1 2divide I 5 [l , u ] into I 5 [l , y ] and I 5 [y , u ];s s s s s s s s s

for h 5 1, 2 do
begin

k k k k k kh h:Y 5 I 3 ? ? ? 3 I 3 I 3 I 3 ? ? ? 3 I ;1 s21 s s11 m
khBRANCH/BOUND(Y )
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end
end

end
end

end;

]
The convex envelops f , i [ M, can be obtained in O(m) arithmetic operations andi ]

O(m) evaluations of f s. Problem P can be constructed in O(mn) arithmetici

operations. Therefore, the number of arithmetic operations at the first stage of the
]

bounding operation is dominated by that needed to solve a Hitchcock problem P; it
can also be bounded by some lower order polynomial in (m, n), e.g. H(m, n) 5

O((mn log(m 1 n))(mn 1 (m 1 n) log(m 1 n))) (see [2]). The second stage, as shown
in Theorem 3.2, requires O(mn log n) arithmetic operations and O(mn) evaluations
of f s. Consequently, if an evaluation of f s can be done in a unit time, the totali i

computational time needed in the procedure BRANCH/BOUND is bounded by
O(H(m, n)) before its recursive calls.

4. Computational results

Let us report computational results of testing the algorithm LP LAGRANGE on–
randomly generated problems of PTP.

The algorithm was coded in double precision C language according to the
description in Section 3.1. In the procedure BRANCH/BOUND, the Hitchcock

]]
problem P was solved by the stepping-stone algorithm; and L(l) was solved through

]
sorting c (l), j [ N, by quicksort for each i [ M. Therefore, in our code, theij

first-stage bounding operation requires pseudo-polynomial time [2]; the second-stage
2requires O(mn log n) time on the average but O(mn ) time in the worst case [1]. In

addition to the code LP LAGRANGE, Soland’s algorithm [20] was coded in the–
same way for the sake of comparison (denoted by SOLAND).

The test problems were generated in the following manner: c s were integersij

drawn from the uniform distribution [1, 10]; u s were all fixed at 200; b s were set toi j

the round-off value of a(o u ) /n for a 5 0.6, 0.75 and 0.9; and the concavei[M i
]production costs were defined by f ( y ) 5 b y for b uniformly random in [10, 20].i i Ï i

The size of (m, n) ranged from (5, 25) to (30, 100). For each size, ten instances were
solved on a UNIX workstation (hyperSPARC, 150 MHz).

Table 1 shows the comparison of the codes LP LAGRANGE and SOLAND on–
problems of six different sizes. In columns of LP LAGRANGE, the average–
number of calls on the procedure BRANCH/BOUND and the average CPU time in
seconds (and their maxima in the brackets) are listed for a 5 0.6, 0.75 and 0.9; in
columns of SOLAND, the same statistics are listed for a 5 0.75. We see clearly that
LP LAGRANGE surpasses SOLAND in all respects. There is no doubt that this is–
caused by the second-stage bounding operation in LP LAGRANGE, because it is–
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Table 1. Comparison of LP LAGRANGE and SOLAND–

m 3 n LP LAGRANGE SOLAND–

a 5 0.6 a 5 0.75 a 5 0.9 a 5 0.75

[ calls time [ calls time [ calls time [ calls time

5 3 25 126.5 0.207 22.0 0.077 1.2 0.042 138.0 0.187
(239) (0.367) (119) (0.183) (3) (0.050) (225) (0.317)

10 3 25 1244.2 3.13 42.4 0.297 1.0 0.117 8919.8 15.23
(4439) (8.03) (143) (0.783) (1) (0.133) (31217) (53.82)

15 3 25 30.8 0.441 8.8 0.297 1.0 0.243 416949.0 2453.93
(139) (1.25) (19) (0.433) (1) (0.283) (1660667) (8116.37)

5 3 50 171.4 1.647 67.6 1.04 16.8 0.603 392.2 2.31
(243) (2.43) (141) (1.50) (41) (1.08) (649) (3.78)

10 3 50 3033.0 71.46 169.2 6.85 7.4 1.07 78374.8 1340.97
(13077) (239.17) (461) (11.20) (25) (1.65) (170401) (3053.12)

15 3 50 1504.8 87.68 92.8 8.42 1.0 1.48 — —*
(4507) (260.82) (211) (16.80) (1) (1.78) (—) (—)

* The aveage time exceeded 10 thousand seconds. When a 5 0.9, the number of calls was 88501.6
(291395); the time was 4054.14 (17093.9) seconds.

the essential difference between the two codes. More noteworthy is a decrease in the
number of calls made by LP LAGRANGE between m 5 10 and 15 for each n and–
a. This tendency is indicated more clearly by Table 2.

Table 2 shows the results of LP LAGRANGE on problems of larger sizes with a–
fixed at 0.75. For n 5 75 and 100, the table gives the same statistics as Table 1 from
m 5 5 to 30. In either case, we see that the number of calls peaks at some m around
10–15 and then decreases as m increases. We can therefore expect that LP–
LAGRANGE will keep its efficiency up to still larger (m, n) at least for randomly
generated problems of PTP.

Table 2. Computational results of LP LAGRANGE when a 5 0.75–

m n 5 75 n 5 100

[ calls time [ calls time

5 82.6 (135) 6.20 (10.38) 110.4 (227) 19.25 (30.48)
10 433.2 (885) 55.41 (115.10) 1530.6 (6539) 334.64 (1447.67)
15 711.8 (2309) 130.84 (395.43) 197.2 (515) 122.21 (273.50)
20 5.2 (21) 11.85 (17.32) 194.2 (1237) 134.98 (657.88)
25 3.0 (11) 12.76 (16.85) 71.6 (179) 90.78 (175.35)
30 4.6 (13) 16.36 (22.72) 8.2 (45) 46.33 (89.05)
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5. Concluding remarks
]

As we have demonstrated in the preceding section, the Lagrangian relaxation L(l)
] k kprovides a fairly strong lower bound z(l) for the value z of each subproblem P . In

[6], Ghannadan et al. have also used a Lagrangian relaxation and proposed an
efficient heuristic algorithm for problem PTP. They have relaxed the set of
constraints o x 5 y , i [ M, instead of o x 5 b , j [ N. Very recently,j[N ij i i[M ij j

Holmberg and Tuy have published a remarkably efficient branch-and-bound
algorithm of Falk–Soland’s type for a more general problem [10]. Their algorithm
uses only linear programming relaxation but may be improved further by a
well-devised Lagrangian relaxation.

]
Before closing the paper, we will show that the bound z(l) can become still

tighter. Since the total production at factories cannot be below the total demand at
warehouses, any feasible solution (x, y) of the production-transportation problem
(1.1) satisfies

O y > B 5 O b . (5.1)i j
i[M j[N

kSimilarly, if P has a feasible solution (x, y), it must satisfy (5.1). Therefore, the set
kof optimal solutions does not change even if we add the constraint (5.1) to P . The

resulting Lagrangian relaxation with respect to o x 5 b , j [ M, is written asi[M ij j

minimize z 5 f(x, y; l)usubject to O y > Bi
i[M

L9(l)u O x 5 y , i [ Mij i
j[N

ku 0 < x < b , (i, j) [ A, y [ Y .ij j

The feasible set of L9(l) is obviously included in that of L(l). This, together with
Theorem 2.6, leads to the following:

THEOREM 5.1. Let (x9(l), y9(l)) denote an optimal solution of L9(l) and let
z9(l) 5 f(x9(l), y9(l); l). Then

] ] k]z < z(l) < z9(l) < z .

Due to the first constraint, L9(l) cannot be decomposed into rank-two monotonic
problems like (3.1). However, we can transform it to a specially structured
production-transportation problem, for which a pseudo-polynomial algorithm is
available [15]. Let us make m copies of the set N, i.e. N 5 N for each i [ M; and seti

c (l) to zero for each j [ < N . Introducing variables x , j [ < N , and w ,0j i[M i 0j i[M i i

i [ M, we have a problem equivalent to L9(l):
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minimize O O c (l)x 1 O f ( y ) 1 O l bij ij i i j j
j[N i[N j[Ni[M<h0j iu

subject to O w < (m 2 1)Bi
i[MO x 5 w , O x 5 y , i [ M (5.2)0j i ij iu j[N j[Ni i

x 1 x 5 b , j [ N , i [ M0j ij j i

x , x > 0 , j [ N , i [ M0j ij iu y , w > 0 , i [ M .i i

It is easy to check that the value of (5.2) is equal to z9(l). This problem is a
production-transportation problem in which the set of mn warehouses is partitioned
into m subsets N , i [ M; each factory i [ M is allowed to supply only warehousesi

in its assigned subset N ; and factory 0 supplies warehouses in N for each i [ Mi i

with a total of w units. Problems with such a special structure can be solved ini
2O(m nB) arithmetic operations and O(mnB) evaluations of f s if we apply ani

algorithm proposed in [15]. Although the algorithm is pseudo-polynomial, it will be
an effective procedure in the branch-and-bound algorithm for solving PTP when n is
beyond a hundred and B is relatively small. Computational experiments are now
under way, the results of which will be reported elsewhere.

Acknowledgement

The authors are grateful to the anonymous reviewers for their valuable suggestions,
which have considerably improved the earlier version of this paper.

References

1. Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1983), Data Structures and Algorithms,
Addison-Wesley, M.A.

2. Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993), Network Flows: Theory, Algorithms and
Applications, Prentice Hall, N.J.

3. Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (1993), Nonlinear Programming: Theory and
Algorithms, 2nd ed. John Wiley and Sons, N.Y.

4. Falk, J.E. and Soland, R.M. (1969), An algorithm for separable nonconvex programming
problems, Management Science 15: 550–569.

5. Gallo, G., Sandi, C. and Sodini, C. (1980), An algorithm for the min concave cost flow
problem, European Journal of Operational Research 4: 248–255.

¨6. Ghannadan, S., Migdalas, A., Tuy, H. and Varbrand, P. (1994), Heuristics based on tabu
search and Lagrangean relaxation for the concave production-transportation problem, Studies
in Regional and Urban Planning 3: 127–140.

7. Guisewite, G.M. (1995), Network problems, in Horst, R. and Pardalos, P.M. (eds.),
Handbook of Global Optimization, Kluwer Academic Publishers, Dordrecht.

8. Guisewite, G.M. and Pardalos, P.M. (1991), Global search algorithms for minimum concave-
cost network flow problems, Journal of Global Optimization, 1: 309–330.



PRODUCTION-TRANSPORTATION PROBLEMS 73

9. Guisewite, G.M. and Pardalos, P.M. (1993), A polynomial time solvable concave network
flow problem, Networks 23: 143–149.

10. Holmberg, K. and Tuy, H. (1999), A production-transportation problem with stochastic
demand and concave production costs, Mathematical Programming 85: 157–179.

11. Horst, R., Pardalos, P.M. and Thoai, N.V. (1995), Introduction to Global Optimization,
Kluwer Academic Publishers, Dordrecht.

12. Horst, R. and Tuy, H. (1993), Global Optimization: Deterministic Approaches, 2nd edn.
Springer-Verlag, Berlin.

13. Klinz, B. and Tuy, H. (1993), Minimum concave-cost network flow problems with a single
nonlinear arc cost, in Dungzhu Du and Pardalos, P.M. (eds.), Network Optimization
Problems, World Scientific, Singapore, pp. 125–143.

14. Konno, H., Thach, P.T. and Tuy, H. (1997), Optimization on Low Rank Nonconvex
Structures, Kluwer Academic Publishers, Dordrecht.

15. Kuno, T. and Utsunomiya, T. (1996), A decomposition algorithm for solving certain classes
of production-transportation problems with concave production cost, Journal of Global
Optimization 8: 67–80.

16. Kuno, T. and Utsunomiya, T. (1997), A pseudo-polynomial primal-dual algorithm for
globally solving a production-transportation problem, Journal of Global Optimization 11:
163–180.

17. Kuno, T. (1997), A pseudo-polynomial algorithm for solving rank three concave production-
transportation problems, Acta Mathematica Vietnamica 22: 159–182.

18. Magnanti, T.L. and Wong, R.T. (1984), Network design and transportation planning: models
and algorithms, Transportation Science 18: 1–55.

19. Nemhauser, G.L. and Wolsey, L.A. (1988), Integer and Combinatorial Optimization, John
Wiley and Sons, N.Y.

20. Soland, R.M. (1974), Optimal facility location problems with concave costs, Operations
Research 22: 373–382.

21. Tuy, H. (1991), Polyhedral annexation, dualization and dimension reduction technique in
global optimization, Journal of Global Optimization 1: 229–244.

22. Tuy, H. (1998), Convex Analysis and Global Optimization, Kluwer Academic Publishers,
Dordrecht.

23. Tuy, H., Dan, N.D. and Ghannadan, S. (1993), Strongly polynomial time algorithms for
certain concave minimization problems on networks, Operations Research Letters 14:
99–109.

¨24. Tuy, H., Ghannadan, S., Migdalas, A. and Varbrand, P. (1993), Strongly polynomial
algorithm for a production-transportation problem with concave production cost, Optimi-
zation 27: 205–227.

¨25. Tuy, H., Ghannadan, S., Migdalas, A. and Varbrand, P. (1996), Strongly polynomial
algorithm for a production-transportation problem with a fixed number of nonlinear
variables, Mathematical Programming 72: 229–258.


